

JET NOZZEL

JET NOZZEL

Model: JNZ

Jet nozzles are used for preference where the supply air from the diffuser has to travel a large distance to the occupied zone.

This is the case in large rooms (halls, assembly rooms etc.), particularly when the distribution of air via ceiling diffusers is not possible or not practical. Here jet nozzles are arranged in the side wall areas. When the temperature difference between the supply air and the room air changes, the supply air stream is deflected upwards (warm air) or downwards (cold air). The direction of the supply air flow is also affected by other influences such as local convection effects or draughts within the room.

GLOBAL Jet Nozzles are the ideal choice for distributing conditioned from ceiling diffusers is not possible or practical.

Long throw jet nozzles provide optimum performance for air supply within large spaces such as in Connection Centre, Airport Terminals, Indoor Stadiums, Television and Movie Studios & Auditoriums. The nozzles are located within walls, Bulk Heads of columns to optimize supply air distribution.

GLOBAL model JNZ supply nozzles are capable of delivering air to spaces where long distance penetration and low noise levels are required. Its nozzle type outlet suitable for spot cooling or heating, because its direction of air can be adjusted easily to suit one's requirement.

Jet Nozzles can be turned through ±30 degree from its centre-line axis and rotated 360 degree. Thus provide universal directional throw.

SELECTION GUIDE

First determine the total supply air quantity to be delivered the air condition space, based on its heat load.

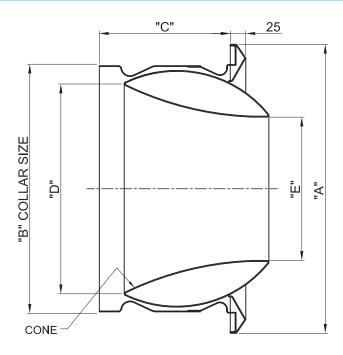
Then determine the number and location of the jet nozzles, based on the air distribution pattern and any constrains imposed by the building design.

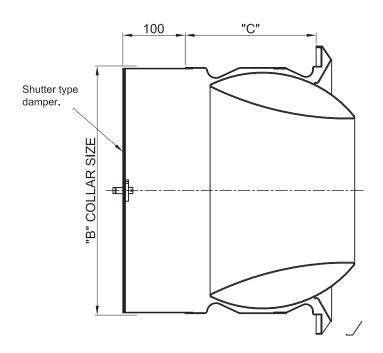
Select suitable Jet Nozzles from tables below after determining Throw require (8m,16m,2Sm). Terminals air velocity at the end of throw shown in the last column low velocity are best in auditoriums, Television, Movie studios while medium to high velocities can be tolerated in the airport & exhibition centers where occupants are moving about.

FEATURES

- Constructed of aluminum.
- 360 directional adjustment
- The maximum up or down adjustment angle of the outlet is ±30° in any direction.
- Excellent throw penetration
- High capacity
- Low noise levels and low pressure drop
- Shutter type damper for volume control purpose

FINISH


- Standard finish RAL 9016.
- Other finishes are available on request.



Dimensional data

Jet Nozzel

All dimensions are in mm

			thi difficustons are in timi				
MODEL	Ø - "A"	Ø - "B"	"C"	Ø "D"	Ø"E"		
JNZ-100	135	100	52	71	50		
JNZ-180	202	170	98	121	77		
JNZ-240	275	220	113	166	107		
JNZ-280	314	260	148	201	132		
JNZ-325	385	325	170	262	172		
JNZ-400	464	400	218	336	230		

Performance Data:

Model: ARD

	8M						16M 25M															
SIZE	Air flow Duct Installaion			Axial Installation		Air flow		Duct Installaion		Axial Installation		Air flow			Duct Installaion		Axial Installation		Air Velocity			
	I/S	m3/hr	cfm	SP (Pa)	NC	SP (Pa)	NC	I/S	m3/hr	cfm	SP (Pa)	NC	SP (Pa)	NC	I/S	m3/hr	cfm	SP (Pa)	NC	SP (Pa)	NC	m/s
100	18	65	38	55	23	50	22	36	128	75	185	46	140	37	57	204	120	330	58	400	51	0.25
180	23	83	49	-		12		46	166	97	45	•	47	22	69	248	146	85	35	105	35	
240	29	104	61	(*)				61	220	129	42		26		85	306	180	75	30	50	26	
280	37	133	78	120				76	274	161	35	727	16	72	106	382	225	46		31	21	
325	50	180	106					98	353	208	3	-	11		150	540	318	38		21	-	
400	65	234	138	-	-			129	464	273	,	•		-	195	702	413			12		
100	36	128	75	-		140	31	57	204	120		(8)	390	51								0.5
180	46	166	97	45		41	22	92	331	195	165	44	175	43	138	497	292	230	49	350	53	
240	61	220	129	42	a.	28	(5)	121	436	256	130	37	90	35	182	655	386	200	47	47	210	
280	76	274	161	35		11		152	547	322	57	23	70	33	229	824	485	140	38	122	42	
325	98	353	208			1		195	702	413	52	22	40	22	293	1055	621	85	32	92	39	
400	129	464	273	-				258	929	547	35	-	22	21	387	1393	820	72	30	42	31	
100															2	3		0.00				
180	92	331	195	165	44	160	43									-						1 200
240	121	436	256	130	37	80	33	242	871	513	300	52	400	57								
280	152	547	322	57	23	55	29	305	1098	646	200	46	260	52								
325	195	702	413	52	22	42	27	390	1404	826	145	39	148	47	585	2106	1240	280	52	315	58	
400	258	929	547	35	=	19		516	1858	1093	125	36	90	42	773	2783	1638	200	47	175	52	

